Hierarchical clustering of asymmetric networks

نویسندگان

  • Gunnar E. Carlsson
  • Facundo Mémoli
  • Alejandro Ribeiro
  • Santiago Segarra
چکیده

This paper considers networks where relationships between nodes are represented by directed dissimilarities. The goal is to study methods that, based on the dissimilarity structure, output hierarchical clusters, i.e., a family of nested partitions indexed by a connectivity parameter. Our construction of hierarchical clustering methods is built around the concept of admissible methods, which are those that abide by the axioms of value – nodes in a network with two nodes are clustered together at the maximum of the two dissimilarities between them – and transformation – when dissimilarities are reduced, the network may become more clustered but not less. Two particular methods, termed reciprocal and nonreciprocal clustering, are shown to provide upper and lower bounds in the space of admissible methods. Furthermore, alternative clustering methodologies and axioms are considered. In particular, modifying the axiom of value such that clustering in two-node networks occurs at the minimum of the two dissimilarities entails the existence of a unique admissible clustering method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks

Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....

متن کامل

Hierarchical Quasi-Clustering Methods for Asymmetric Networks

This paper introduces hierarchical quasiclustering methods, a generalization of hierarchical clustering for asymmetric networks where the output structure preserves the asymmetry of the input data. We show that this output structure is equivalent to a finite quasi-ultrametric space and study admissibility with respect to two desirable properties. We prove that a modified version of single linka...

متن کامل

Agglomerative Clustering Using Asymmetric Similarities

Algorithms of agglomerative hierarchical clustering using asymmetric similarity measures are studied. Two different measures between two clusters are proposed, one of which generalizes the average linkage for symmetric similarity measures. Asymmetric dendrogram representation is considered after foregoing studies. It is proved that the proposed linkage methods for asymmetric measures have no re...

متن کامل

Convergence of Hierarchical Clustering and Persistent Homology Methods on Directed Networks

While there has been much interest in adapting conventional clustering procedures—and in higher dimensions, persistent homology methods—to directed networks, little is known about the convergence of such methods. In order to even formulate the problem of convergence for such methods, one needs to stipulate a reasonable model for a directed network together with a flexible sampling theory for su...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Data Analysis and Classification

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018